TSUBAME---A Year Later

Satoshi Matsuoka, Professor/Dr.Sci.

Global Scientific Information and Computing Center

Tokyo Inst. Technology & NAREGI Project National Inst. Informatics

EuroPVM/MPI, Paris, France, Oct. 2, 2007

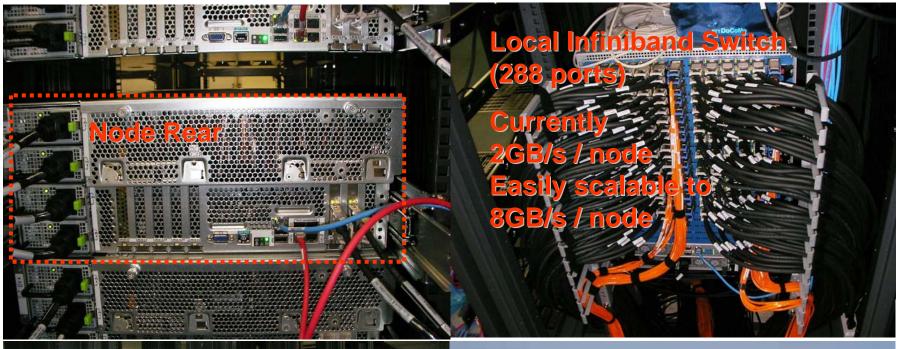
Topics for Today

- Intro
- Upgrades and other New stuff
- New Programs
- The Top 500 and Acceleration
- Towards TSUBAME 2.0

The TSUBAME Production "Supercomputing Grid Cluster" Spring 2006-2010

1.5PB Petabyte (Sun "Thumper")

0.1Petabyte (NEC iStore)

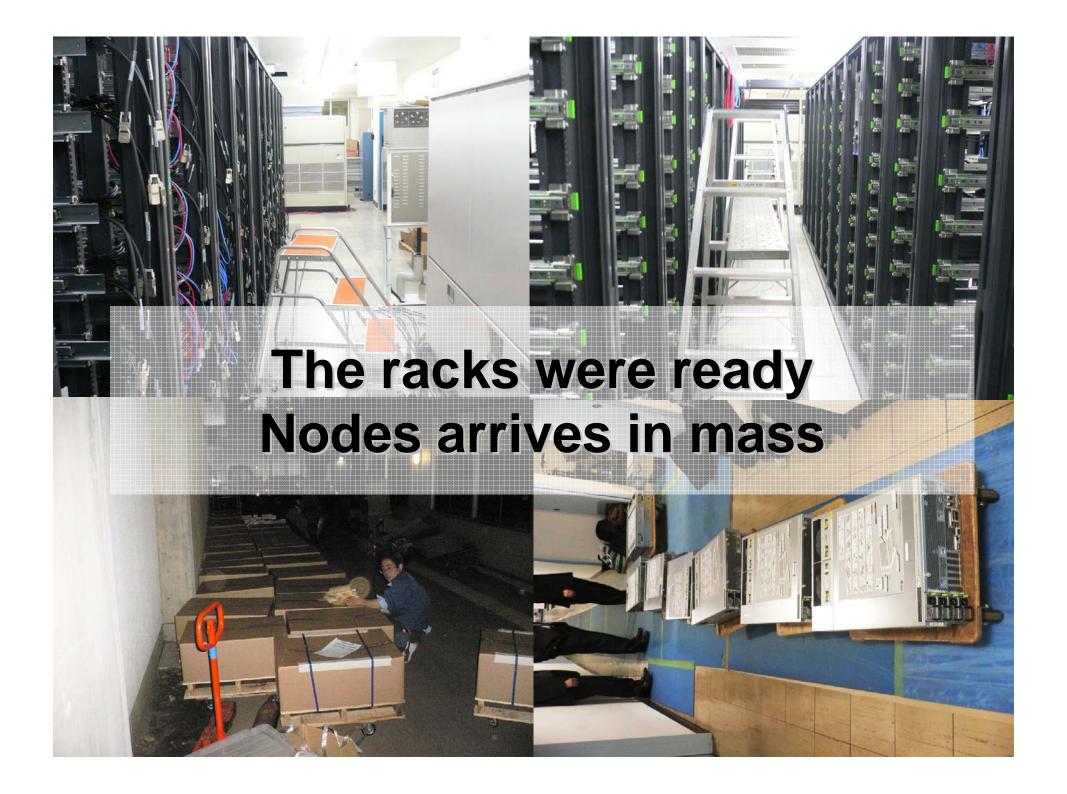

Lustre FS, NFS, CIF, WebDAV (over IP)

70GB/s 50GB/s aggregate I/O BW

ClearSpeed CSX600 SIMD accelerator 360 boards, 35TeraFlops(Current))

TSUBAME assembled like iPod...

NEC: Main Integrator, Storage, Operations


SUN: Galaxy Compute Nodes, Storage, Solaris

AMD: Opteron CPU Voltaire: Infiniband Network

ClearSpeed: CSX600 Accel. CFS: Parallel FSCFS

Novell: Suse 9/10

Titech GSIC: us **NAREGI: Grid MW** UK ClearSpeed[™] AMD:Fab36 Japan [≪]Israel Oltaire Systems, Inc. NAREGI

Design Principles of TSUBAME(1)

- Capability and Capacity: have the cake and eat it, too!
 - High-performance, low power x86 multi-core CPU
 - High INT-FP, high cost performance, Highly reliable
 - Latest process technology high performance and low power
 - Best applications & software availability: OS (Linux/Solaris/Windows), languages/compilers/tools, libraries, Grid tools, all ISV Applications
 - FAT Node Architecture (later)
 - Multicore SMP most flexible parallel programming
 - High memory capacity per node (32/64/128(new)GB)
 - Large total memory 21.4 Terabytes
 - Low node count improved fault tolerance, easen network design
 - High Bandwidth Infiniband Network, <u>IP-based (over RDMA)</u>
 - (Restricted) two-staged fat tree
 - High bandwidth (10-20Gbps/link), multi-lane, low latency (< 10microsec), reliable/redundant (dual-lane)
 - Very large switch (288 ports) => low switch count, low latency
 - Resilient to all types of communications; nearest neighbor, scatter/gather collectives, embedding multi-dimensional networks
 - IP-based for flexibility, robustness, synergy with Grid & Internet

Design Principles of TSUBAME(2)

- PetaByte large-scale, high-perfomance, reliable storage
 - All Disk Storage Architecture (no tapes), 1.1Petabyte
 - Ultra reliable SAN/NFS storage for /home (NEC iStore), 100GB
 - Fast NAS/Lustre PFS for /work (Sun Thumper), 1PB
 - Low cost / high performance SATA2 (500GB/unit)
 - High Density packaging (Sun Thumper), 24TeraBytes/4U
 - Reliability thru RAID6, disk rotation, SAN redundancy (iStore)
 - Overall HW data loss: once / 1000 years
 - High bandwidth NAS I/O: ~50GBytes/s Livermore Benchmark
 - Unified Storage and Cluster interconnect: low cost, high bandwidth, unified storage view from all nodes w/o special I/O nodes or SW
- Hybrid Architecture: General-Purpose Scalar
 + SIMD Vector Acceleration w/ ClearSpeed CSX600
 - 35 Teraflops peak @ 90 KW (~ 1 rack of TSUBAME)
 - General purpose programmable SIMD Vector architecture

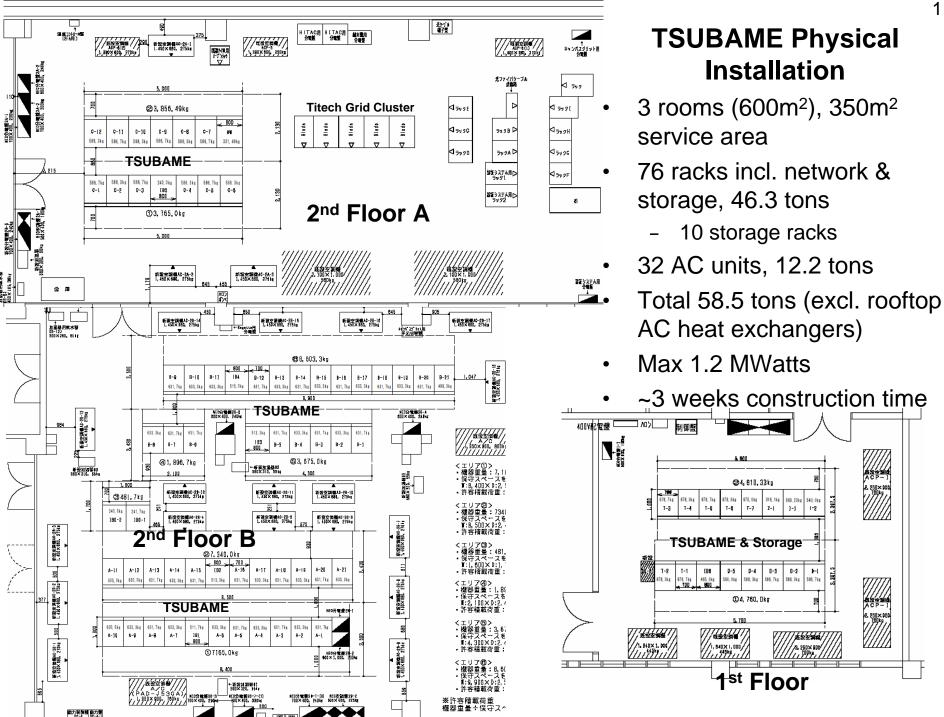
TSUBAME Architecture =

Commodity PC Cluster

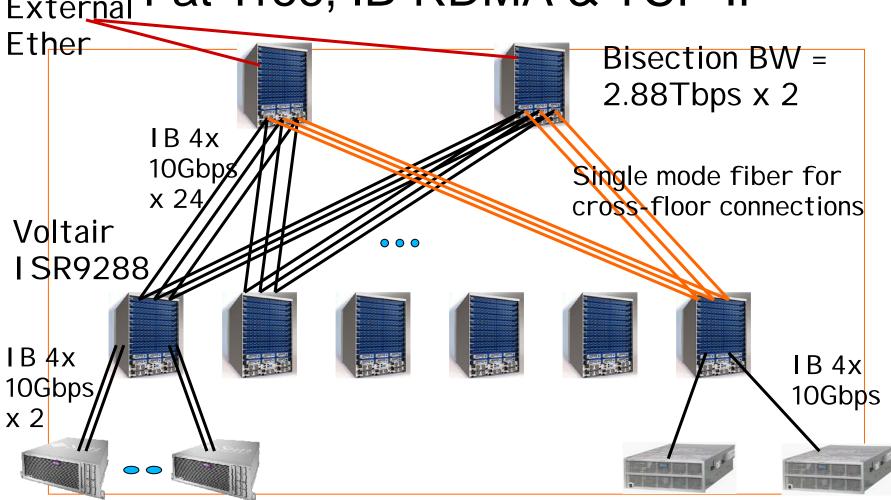
+

Traditional FAT node Supercomputer

+


The Internet & Grid

+


(Modern) Commodity SIMD-Vector Acceleration

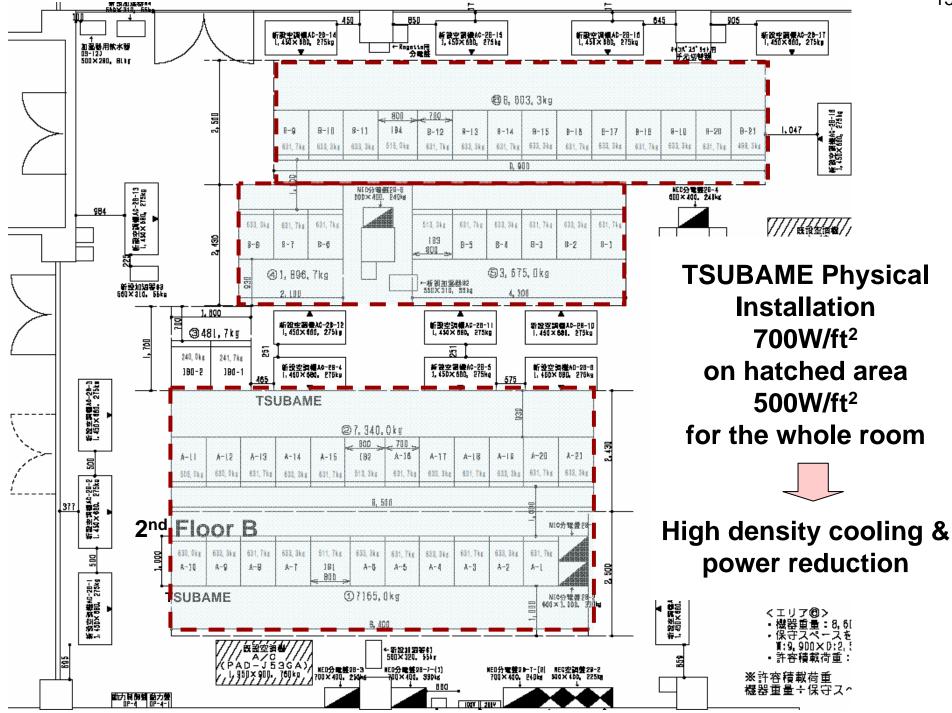
+

iPod (HW integration & enabling services)

TSUBAME Network: (Restricted) External Fat Tree, IB-RDMA & TCP-IP

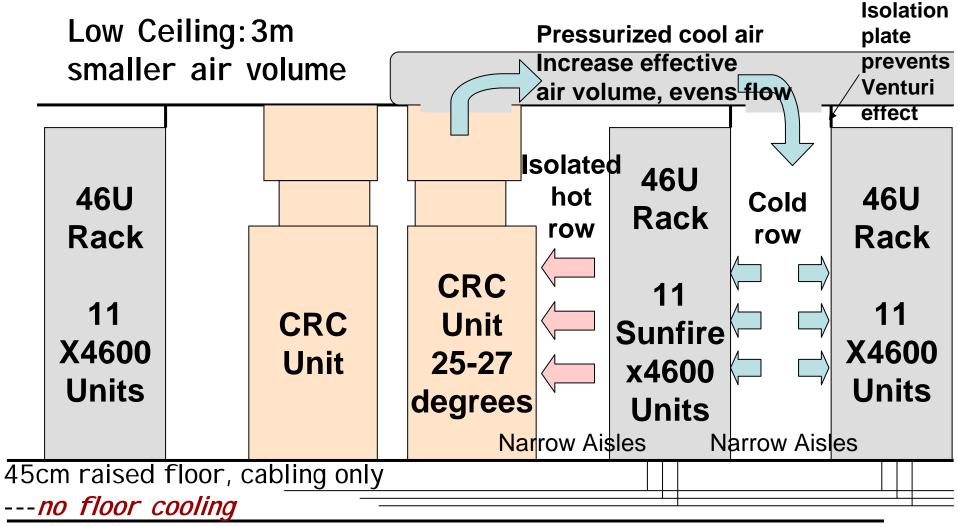
X4600 x 120nodes (240 ports) per switch => 600 + 55 nodes, 1310 ports, 13.5Tbps

X4500 x 42nodes (42 ports) => 42ports 420Gbps


The Benefits of Being "Fat Node"

- Many HPC Apps favor large SMPs
- Flexble programming models---MPI, OpenMP, Java, ...
- Lower node count higher reliability/manageability
- Full Interconnect possible --- Less cabling & smaller switches, multilink parallelism, no "mesh" topologies

	CPUs/Node	Peak/Node	Memory/Node
IBM eServer (SDSC DataStar)	8, 32	48GF~217.6GF	16~128GB
Hitachi SR11000 (U-Tokyo, Hokkaido-U)	8, 16	60.8GF~135GF	32~64GB
Fujitsu PrimePower (Kyoto-U, Nagoya-U)	64~128	532.48GF~799GF	512GB
The Earth Simulator	16	128GF	16GB
TSUBAME (Tokyo Tech)	16	76.8GF+ 96GF	32~128(new)GB
IBM BG/L	2	5.6 GF	0.5~1GB
Typical PC Cluster	2~4	10~40GF	1~8GB


TSUBAME Cooling Density Challenge

- Room 2F-B
 - 480 nodes, 1330W/node max, 42 racks
 - Rack area = $2.5m \times 33.2m = 83m^2 = 922ft^2$
 - Rack spaces only---Excludes CRC units
 - Max Power = x4600 nodes 1330W x 480
 nodes + IB switch 3000W x 4 = 650KW
 - Power density ~= 700W/ft² (!)
 - Well beyond state-of-art datacenters (500W/ft²)
 - Entire floor area \sim = 14m x 14m \sim = 200m² = 2200 ft²
 - But if we assume 70% cooling power as in the Earth Simulator then total is 1.1MW – still ~500W/ft²

Cooling and Cabling 700W/ft²

--- hot/cold row separation and rapid airflow---

Very narrow hot row aisle--Hot air from the nodes
on the right is immediately
absorbed and cooled by the
CRC units on the left

Pressurized cold air blowing down from the ceiling duct --- very strong wind

TSUBAME as No.1 in Japan circa 2006

>85 TeraFlops

1.1Petabyte

4 year procurement cycle

Has beaten the Earth Simulator in both peak and Top500

Has beaten all the other Univ. centers combined

Total 45 TeraFlops, 350 Terabytes (circa 2006)

みんなのスパコン

"Everybody's Supercomputer"

Isolated High-End

Gap

En<

assive Usage

•Different usage env. from

•No HP sharing with client's PC

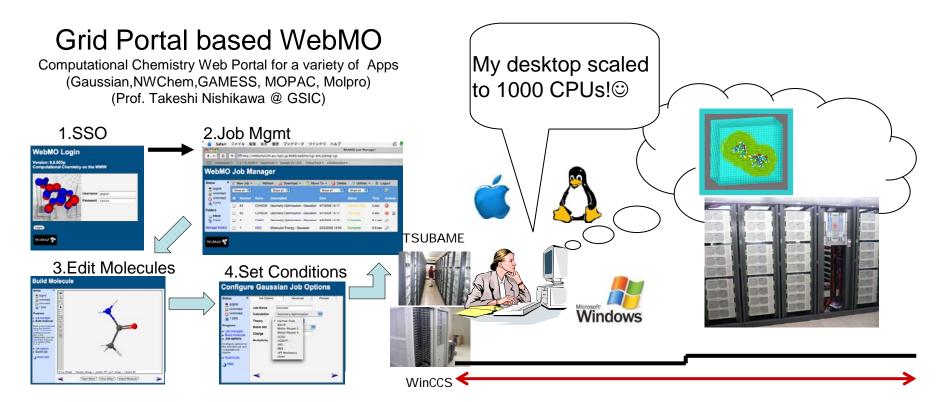
Special HW/SW, lack of ISV support

Lack of common development env. (e.g. Visual Studio)

•Simple batch based, no interactive usage, good UI Service Oriented Idealism of Grid: Seamless integration of supercomputer resource with enduser and enterprise environment

Might as well use my Laptop

Seamless, Ubiquitous access and usage


=>Breakthrough Science through Commoditization of Supercomputing and Grid Technologies

みんなのスパコン

HPC Services in Educational Activities to over 10,000 users

- High-End education using supercomputers in undergrad labs
 - High end simulations to supplement "physical" lab courses
- Seamless integration of lab resources to SCs w/grid technologies
- Portal-based application usage

みんな。スパコン

TSUBAME General Purpose DataCenter Hosting

As a core of IT Consolidation

All University Members == Users

Campus-wide AAA Sytem (April 2006)

- 50TB (for email), 9 Galaxy1 nodes

Campus-wide Storage Service (NEST)

10s GBs per everyone on campus
 PC mountable, but accessible directly from TS

Research Repository

CAI, On-line Courses
 (OCW = Open CourseWare)

Administrative Hosting (VEST)

I can backup ALL my data©

Tsubame Status

How it's flying about... (And doing some research too)

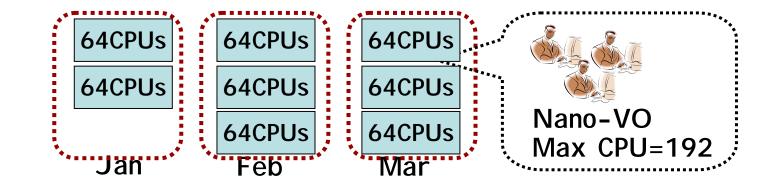
TSUBAME Timeline

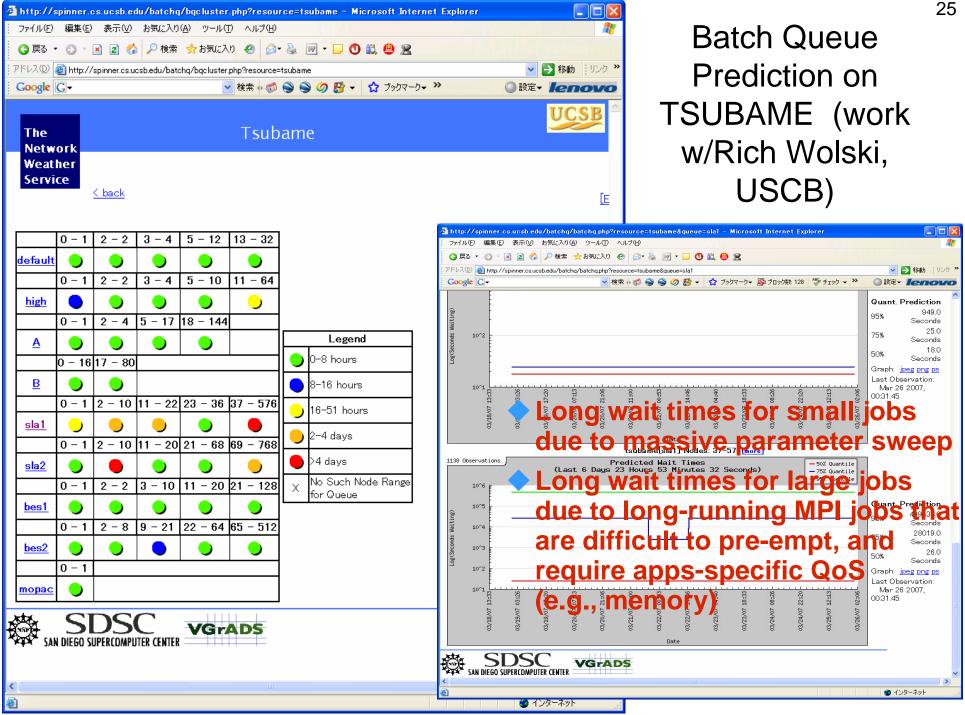
- 2005, Oct. 31: TSUBAME contract
- Nov. 14th Announce @ SC2005
- 2006, Feb. 28: stopped services of old SC
 - SX-5, Origin2000, HP GS320
- Mar 1~Mar 7: moved the old machines out
- Mar 8~Mar 31: TSUBAME Installation
- Apr 3~May 31: Experimental Production phase 1
 - 32 nodes (512CPUs), 97 Terabytes storage, free usage
 - Linpack 38.18 Teraflops May 8th, #7 on the 28th Top500
 - May 1~8: Whole system Linpack, achieve 38.18 TF
- June 1~Sep. 31: Experimental Production phase 2
 - 299 nodes, (4748 CPUs), still free usage
- Sep. 25-29 Linpack w/ClearSpeed, 47.38 TF
- Oct. 1: Full production phase
 - ~10,000CPUs, several hundred Terabytes for SC
 - Innovative accounting: Internet-like Best Effort & SLA

Over 1300

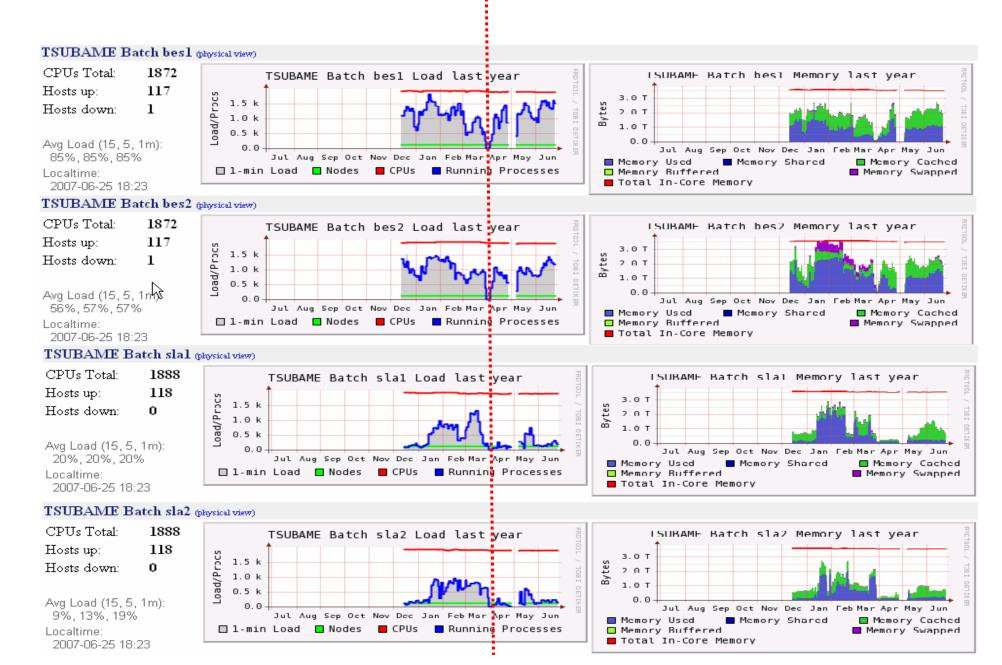
SC users

Dynamic machine Small allocation


TSUBAME Scheduling and Accounting --- Synonimity w/ Existing Social Infrastructures


- Three account/queue types (VO-based) (REALY MONEY!)
 - Small FREE Usage: "Promotion Trial (Catch-and-bait)"
 - Service Level Agreement: "Cell Phones"
 - Exclusivity and other high QoS guarantees
 - Best Effort (new): "Internet ISP"
 - Flat allocation fee per each "UNI T"

Investment Model for allocation (e.g. "Stocks&Bonds")


- Open & extensive information, fair policy guarantee
- Users make their own investment decisions---collective societal optimization (Adam Smith)

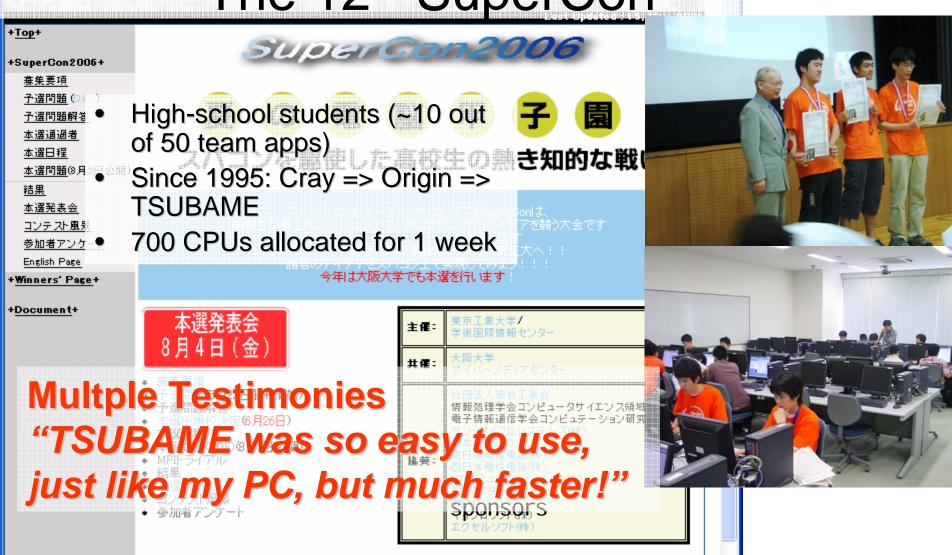
<u> 'ෑ. Top-Down planned allocation (planned economy)</u>

New School Year

Tsubame in Magazines (e.g., Unix Magazine, a 20 page special)

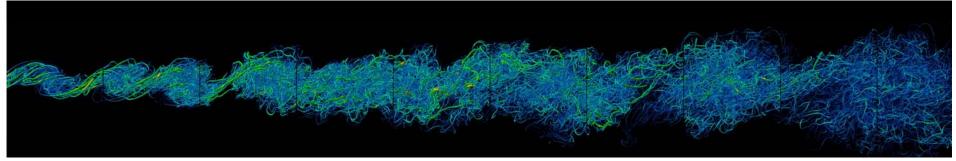
For Details...

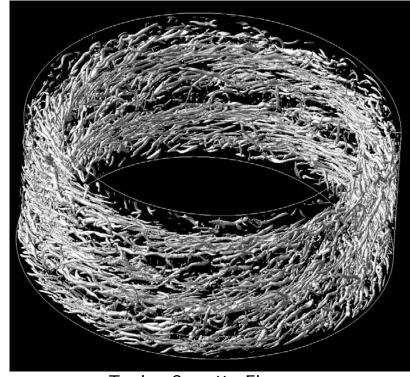
 A ~70 Page Document that describes the policy, the implementation, and every other little detail... (by M. Hamakawa @Sun Services, Japan)


SUN N1™ GRID ENGINE SOFTWARE AND THE TOKYO INSTITUTE OF TECHNOLOGY SUPERCOMPUTER GRID

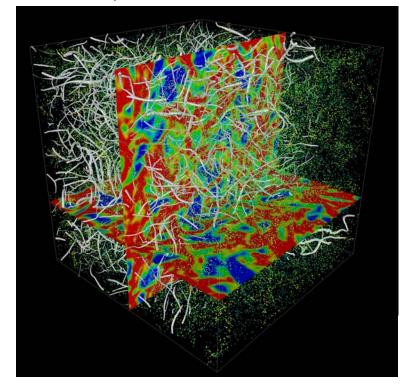
Minoru Hamakawa, Sun Services, Japan Sun BluePrints" On-Line — June 2007

Part No 820-1695-10 Revision 1.0, 5/23/07 Edition: June 2007


Titech Supercomputer Contest "The 12th SuperCon"

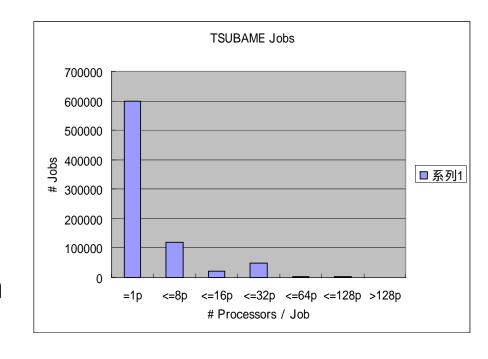

TSUBAME Application Profile

- Large scale codes, e.g. port from the Earth Simulator
 - Simple porting is easy
 - Tuned Vector code into cache-friendly "normal code" takes more time.
- Large-Scale (>1,000~10,000 instances)
 Parameter Survey, Ensemble, Optimization, ...
- Lots of I SV Code---Gaussian, Amber, ...
- Storage-Intensive Codes --- Visualization
- => Often Limited by Memory, not CPUs
- Must Give users both EASE and COMPELLING REASON to use TSUBAME


TSUBAME Applications---Massively Complex Turbulant Flow and its Visualization (by Tanahashi Lab and Aoki Lab, Tokyo Tech.)

Turbulant Flow from Airplane

Taylor-Couette Flow

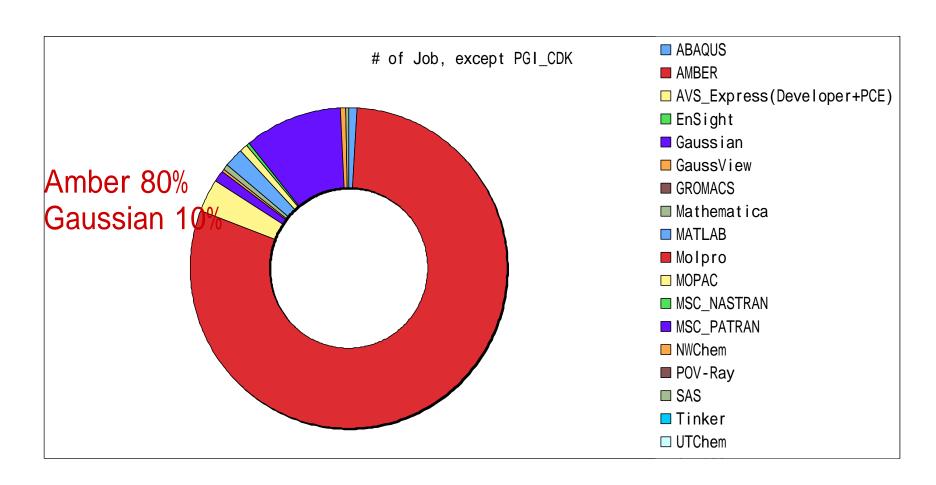

AMBER Example: 1UAO with water molecules

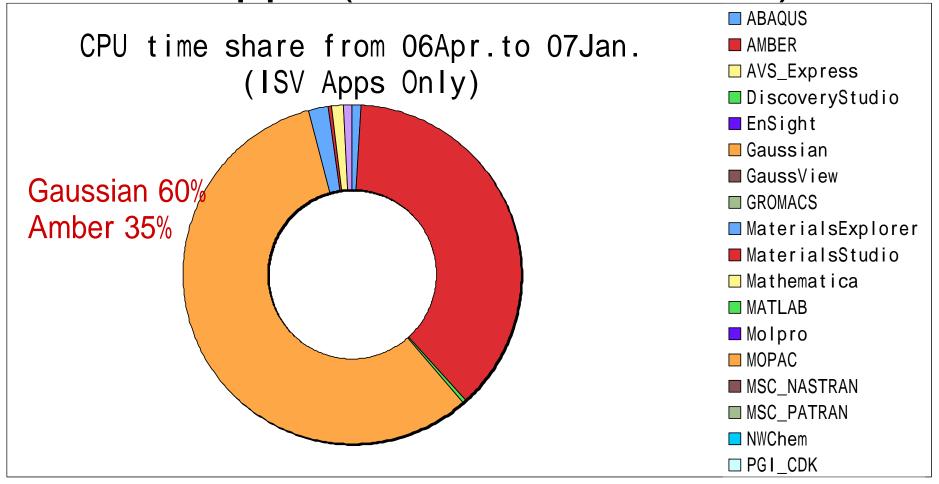
- Smallest protein chignolin in TIP3P water buffer (30A radius)
- 37,376 atoms
- cutoff 20.0 angstrom
- 2.0 fs timestep

Three conditions hava good scalarability in 30 A and 40A case:

TSUBAME Job Statistics Dec. 2006-Aug.2007 (#Jobs)

- 797,886 Jobs (~3270 daily)
- 597,438 serial jobs (74.8%)
- 121,108 <=8p jobs (15.2%) 90%
- 129,398 I SV Application Jobs (16.2%)
- However, >32p jobs account for 2/3 of cumulative CPU usage




Coexistence of ease-of-use in both

- short duration parameter survey
- large scale MPI(Both are hard for *physically* large-scale distributed grid)

TSUBAME Job Statistics for ISV Apps (# Processes)

Reprisal: TSUBAME Job Statistics for ISV Apps (# CPU Timeshare)

Multi-User and Ensemble! (60,000-way Gaussian ensemble job recorded on TSUBAME) => Throughput(!)

TSUBAME Draws Research Grants

- "Computationism" Global Center-of-Excellence (Global COE) Program
 - Incubating Math/Computer Science/HPC Experts
 - \$2~2.5 mil x 5 years
- "Center of (Industrial) Innovation Program"
 - Industrial Collaboration w/ High-End Facilities
 - $\sim 1 \text{ mil } x = 5 \text{ years}$
- More Coming...

Compuationism Approach to Science

Non-traditional computational modeling

⇒ Apply non-traditional mathematical approaches ⇒ Making the Impossible (Infeasible) Possible

1000x1000 mutual interactions of proteins

P1 P2 P3 P4 P5 P1000

Complex &
Large Scale

Drug Design
Narrowing the
Candidate

Complexity: 1000 1000 x 1000

Infeasible with traditional ab-initio approaches 100s of years on a Petascale supercomputer

Structural Matching [Y. Akiyama]

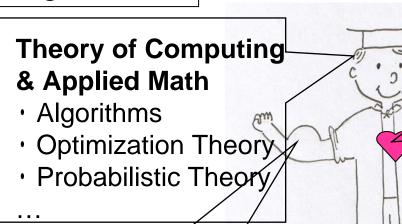
Non-traditional modeling and approach

Possible in a few months

P1000

P1

P2


P3

P4

P5

Educating "Computatism Experts" Incubating Computing Generalists

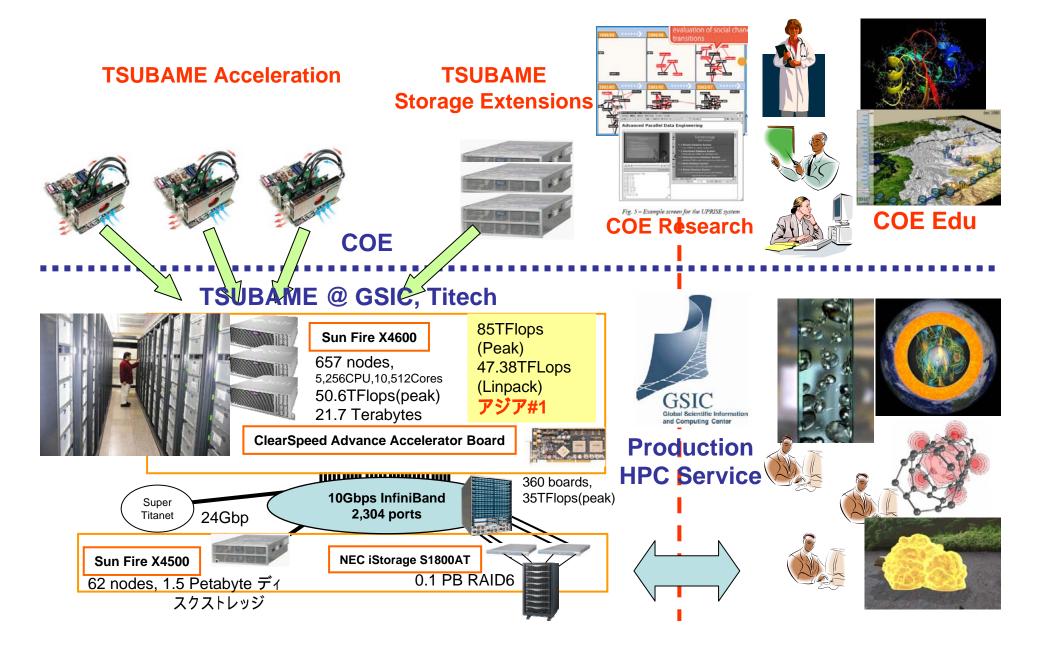
Target Profile

HPC & CS Expertise

- Modeling
- Programming
- Systems

. . .

Computationism Ideology


Work with domain scientists

 Willing to Study and understand the Science and the discipline

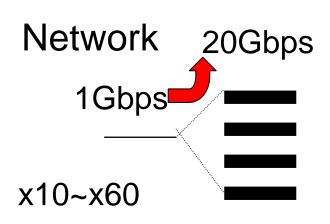
Domain Scientist Counterpart

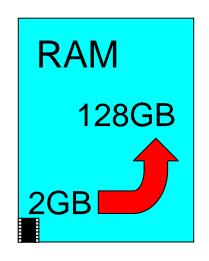
Building the COE on TSUBAME

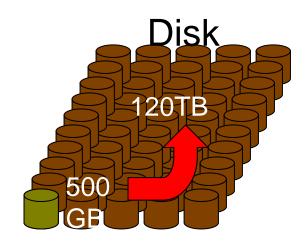
Ministry of Edu. "Center of Innovation Program" Industrial Collaboration w/ High-End Facilities Provide industrial access to TSUBAME (via Grid)

 (x86) PC&WS Apps in industry directly execute at x10~x100 scale

Not just CPu power but memory/storage/network, etc.

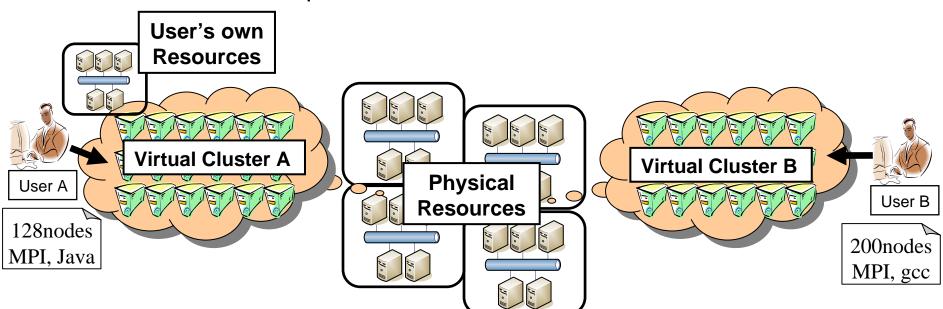

- HPC-Enabling non-traditional industries ---ICT, Financials, Security, Retail, Services, ...)
- E.g. Ultra Large-scale portfolio risk analysis by a Megabank (ongoing)



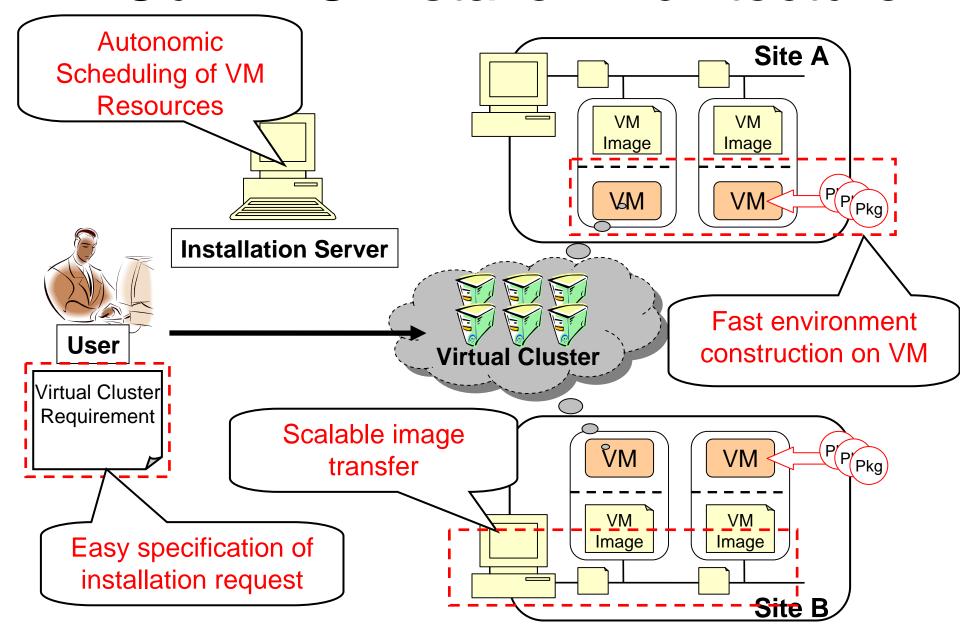

Why Industries are interested in TSUBAME?

- Standard Corporate x86 Cluster Env. vs. TSUBAME -

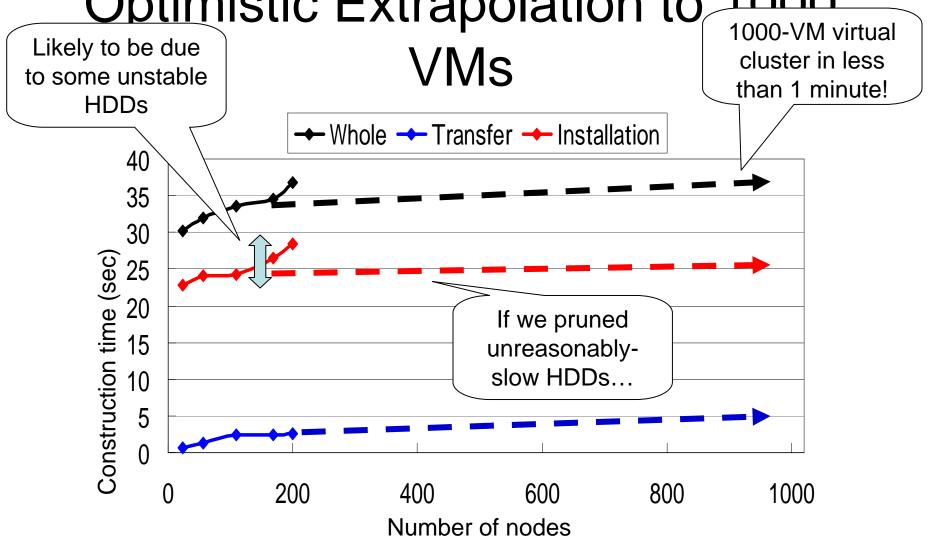
	CPU Core	Network	RAM	Disk(Cap, BW)
Std.	2~4(node)	1Gbps	2~8GB	500GB, 50MB/s
	32~128(job)	32Gbps	128GB	10TB(NAS), 100MB/s
TSUBA	16 (node)	20Gbps	32~128GB	120TB, 1GB/s
ME	1920 (job)	2.5Tbps	3840GB	120TB, 3GB/s



The Industry Usage is Real(!!!) and will be Stellar (!!!)


- Two calls since July: 8 real industry apps for TSUBAME (and 18 others for Nat'l Univ. Centers coalition)
- Example: a Japanese Megabank has run a real financial analysis app. on 1/3 of TSUBAME, and is EXTREMELY happy with the stellar results.
 - Only runnable with >20GB mem, IB-based I/O
 - Stay tuned for follow-on announcements...
- Big booster for non-dedicated commercial usage
 - The overall grid must be as such

Research: Grid Resource Sharing with Virtual Clusters ([CCGrid2007] etc.) • Virtual Cluster


- Virtual Machines (VM) as computing nodes
 - Per-user customization of exec environment
 - Hides software heterogeneity
 - Seamless integration with user's own resources
- Interconnected via overlay networks
 - Hides network asymmetry
 - Overcomes private networks and firewalls

Our VPC Installer Architecture

Scalability w/# of VPC nodes:
Optimistic Extrapolation to 1000-VM

TSUBAME Siblings ---The Domino Effect on Major Japanese SCs

- Sep. 6th, 2006---U-Tokyo, Kyoto-U, and U-Tsukuba announced "common procurement procedure" for the next gen SCs in 1H2008
 - 100-150 TFlops
 - HW: x86 cluster-like SC architecture
 - NW: Myrinet10G or IB + Ethernet
 - SW: Linux+SCore, common Grid MW
- Previously, ALL centers ONLY had dedicated SCs
- Other centers will likely follow...
 - No other choices to balance widespread usage, performance, and prices
 - Makes EVERY sense for University Mgmt.
- (VERY) standardized SW stack and HW configuration
 - Adverse architecture diversity has been impediment for Japanese Grid Infrastructure

Japan's 9 Major University Computer Centers (excl. National Labs) circa Spring 2006 **Hokkaido University** Information Initiative Center HITACHI SR11000 5.6 Teraflops

10Gbps SuperSINET Interconnecting the Centers

University of Tsukuba

FUJITSU VPP5000 PACS-CS 14.5 TFlops

Kyoto University

Academic Center for Computing

and Media Studies FUJITSU PrimePower2500 8.9 Teraflops

Kyushu University

Computing and **Communications Center**

FUJITSU VPP5000/64 IBM Power5 p595 5 Teraflops

~60 SC Centers in Japan incl. Earth Simulator

- 10 Petaflop center by 2012

1.2 Teraflops

Tohoku University Information Synergy Center

NFC SX-7 NEC TX7/AzusA

University of Tokyo Information Technology Center

HITACHI SR8000 HITACHI SR11000 6 Teraflops Others (in institutes)

National Inst. of Informatics

SuperSINET/NAREGI Testbed

17 Teraflops

Tokyo Inst. Technology

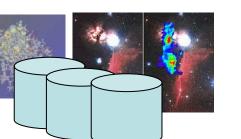
Global Scientific Information and Computing Center

2006 NFC/SUN TSUBAMF

85 Teraflops

Nagoya University Information Technology Center

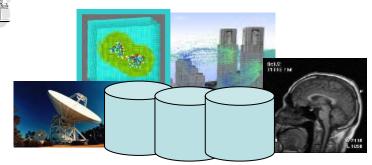
FUJITSU PrimePower2500 11 Teraflops


Japan's 9 Major University Computer Centers (excl. National Labs) circa 2008 **Hokkaido University** Information Initiative Center >40Gbps SuperSINET3 HITACHI SR11000 5.6 Teraflops Interconnecting the Centers **University of Tsukuba** 2006 PACS-CS 14.5 TFlops NextGen x86 100-150 Teraflops **Kyoto University** Tohoku University **Academic Center for Computing Information Synergy Center** and Media Studies NFC SX-7 NextGen x86 100-150 Teraflops NEC TX7/AzusA **University of Tokyo Kyushu University Information Technology Center** Computing and NextGen x86 150 Teraflops **Communications Center** HITACHI SR11000 18 Teraflops 2007 x86 50 TeraFlops? Others (in institutes) Fujitsu Primequest? IBM Power5 p595 5 Teraflops \$\infty\$ **National Inst. of Informatics** x86 TSUBAME NAREGI Testbed 4 Teraflops sibling domination **Tokyo Inst. Technology Global Scientific Information** and Computing Center NEC/SUN TSUBAME Still - 10 **Osaka University** 85 Teraflops → 250 TFlops? CyberMedia Center Petaflop **Nagoya University Information Technology Center** center by 2012" NFC SX-8 or SX-9 2008 x86 Cluster 35 Teraflops FUJITSU PrimePower2500

11 Teraflops

TSUBAME Upgrades

Towards Multi-Petabyte Data Grid Infrastructure based on TSUBAME

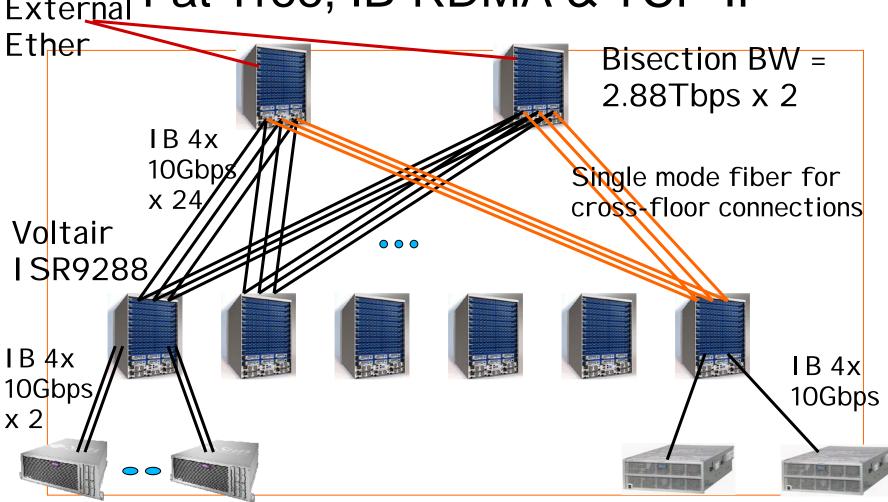

All User Storage (Documents, etc)

Various public research
DBs and Mirrors---Astro,
Bio, Chemical

rch All Historical Archive of stro, Research Publications, Documents, Home Pages, Archival & Data Grid Middleware

Various Observational & Simulation Data

NESTRE System



Petabytes, Stable Storage Data Provenance "Archiving Domain Knowledge"

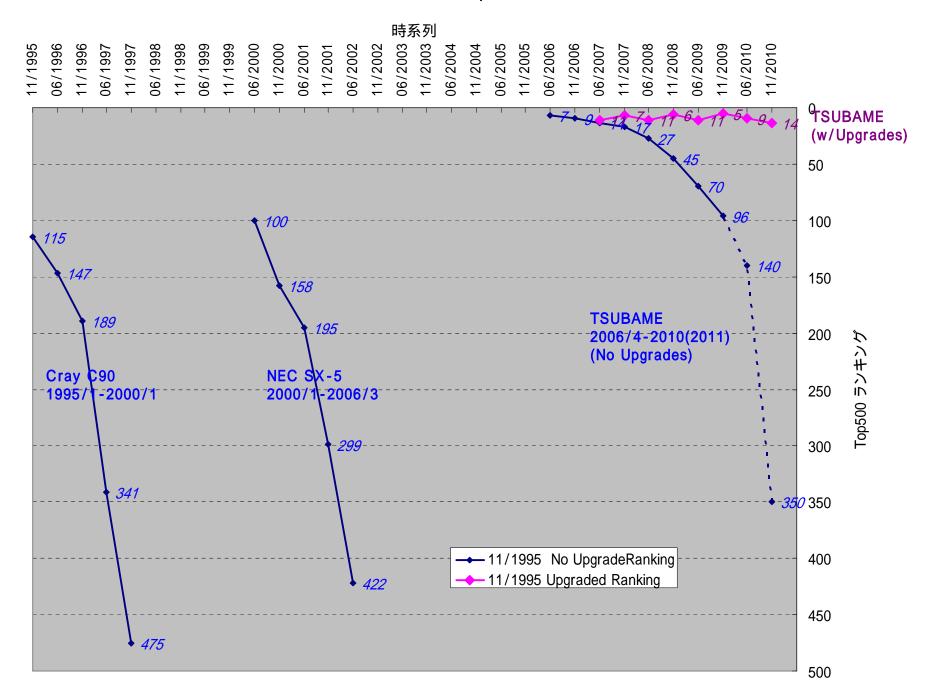
TSUBAME

~100 TeraFlops, Petabytes Storage

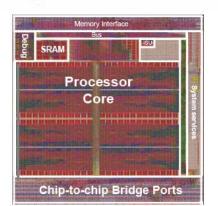
TSUBAME Network: (Restricted) External Fat Tree, IB-RDMA & TCP-IP

X4600 x 120nodes (240 ports) per switch => 600 + 55 nodes, 1310 ports, 13.5Tbps

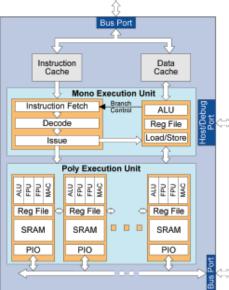
X4500 x 42nodes (42 ports) => 42ports 420Gbps NESTRE (and the old cluster nodes it replaced)



TSUBAME Linpack and Acceleration


Heterogeneity both Intra- and Inter- node

GSIC 過去のスパコンおよびTSUBAME Top500 性能の歴史および予測



ClearSpeed Advance Accelerator Board

ClearSpeed

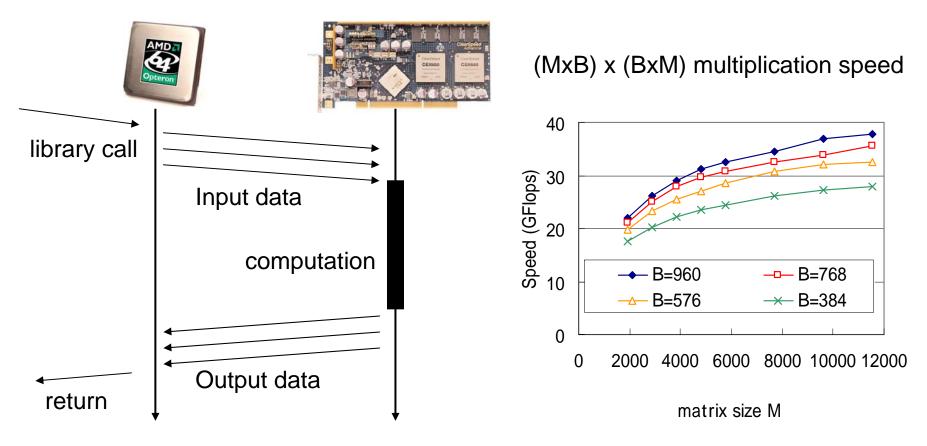
Hardware

- ·25W Max Power
- ·CSX600 processor x2(96GFLOPS Peak)
- ·IEEE 754 64bit Double-Precision Floating Point
- · 133MHz PCI-X Host Interface
- ·On board memory: 1GB (Max 4 GB)
- ·Internal memory bandwidth :200 Gbytes/s
- ·On-board memory bandwidth: 6.4Gbytes/s

Software

- ·Standard Numerical Libraries
- ·ClearSpeed Software Development Kit (SDK)

Applications and Libraries


- Linear Algebra- BLAS, LAPACK
- Bio Simulations- AMBER, GROMACS
- Signal Processing FFT (1D, 2D, 3D), FIR, Wavelet
- Various Simulations CFD, FEA, N-body
- Image Processing filtering, image recognition, DCTs
- •Oil&Gas Kirchhoff Time/Wave Migration

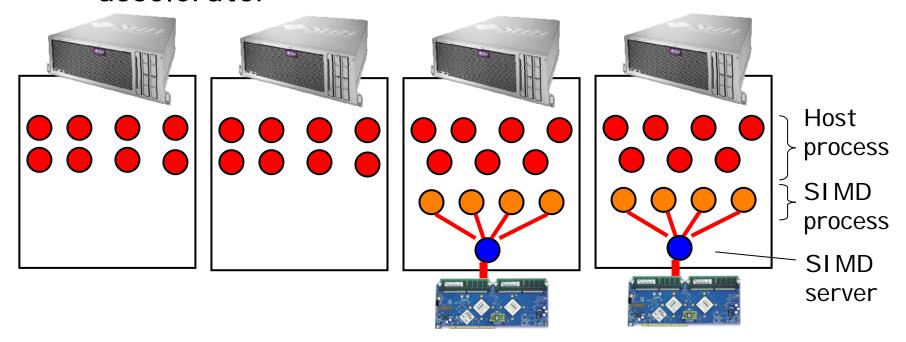
ClearSpeed Mode-of Use

- 1. User Application Acceleration
 - Matlab, Mathematica, Amber, Gaussian...
 - Transparent, offload from Opterons
- 2. Acceleration of Standard Libraries
 - BLAS/DGEMM, LAPACK, FFTW...
 - Transparent to users (Fortran/C bindings)
- 3. User Applications
 - Arbitrary User Applications
 - Need MPI-like programming with C-dialect

Note: Acceleration is "Narrow Band"=> Hard to Scale

ClearSpeed Matrix Library

- About 40 GFlops DGEMM w/old library
 - 70GFlops with new beta(!)
- Performance heavily depends on matrix size


I ssues in a (VERY) Heterogeneous HPL w/Acceleration

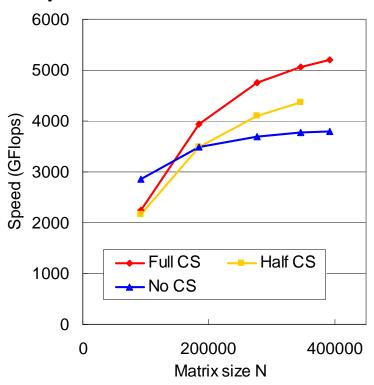
- How can we run HPL efficiently under following conditions?
 - Need to use efficiently both Opteron and ClearSpeed
 - About 70 GFlops by 16 Opteron cores
 - 30-40 GFlops by ClearSpeed (current)
 - Only (360/655) TSUBAME nodes have ClearSpeed
 - Modification to HPL code for heterogeneity
- Our policy:
 - Introduce HPL processes (1) that compute with Opterons and (2) that compute with ClearSpeed
 - Make workload of each HPL process (roughyl) equal by oversubscription

Our Heterogeneous HPL Algorithm

Two types of HPL processes are introduced

- Host processes use GOTO BLAS's DGEMM
- SIMD processes throw DGEMM requests to accelerator

Additional SIMD server directly calls CSXL DGEMM


mmap() is used for sharing matrix data

Linpack Details

- SunFire X4600 nodes in TSUBAME
 - Each has 16 Opteron cores, 32 GB memory
- Three measurements:
 - Full CS: ClearSpeed boards on all nodes are used
 - Half CS: # of ClearSpeed boards is the half of nodes
 - Heterogeneous in both intra and inter node
 - No CS: Only Opteron CPUs are used
- Numbers of processes per node are
 - With CS: 3 host processes (x4thread) + 3 SIMD processes
 - W/o CS: 4 host processes (x4thread)

Results(2)

Speed vs matrix size on 60 nodes

Block size NB is

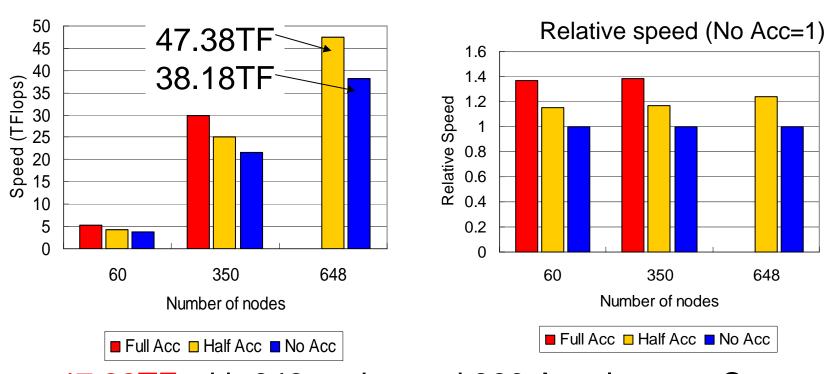
- 960 in Full CS/Half CS
- 240 in No CS

Peak speeds are

Full CS: 5.203TFlops

(N=391680)

Half CS: 4.366TFlops

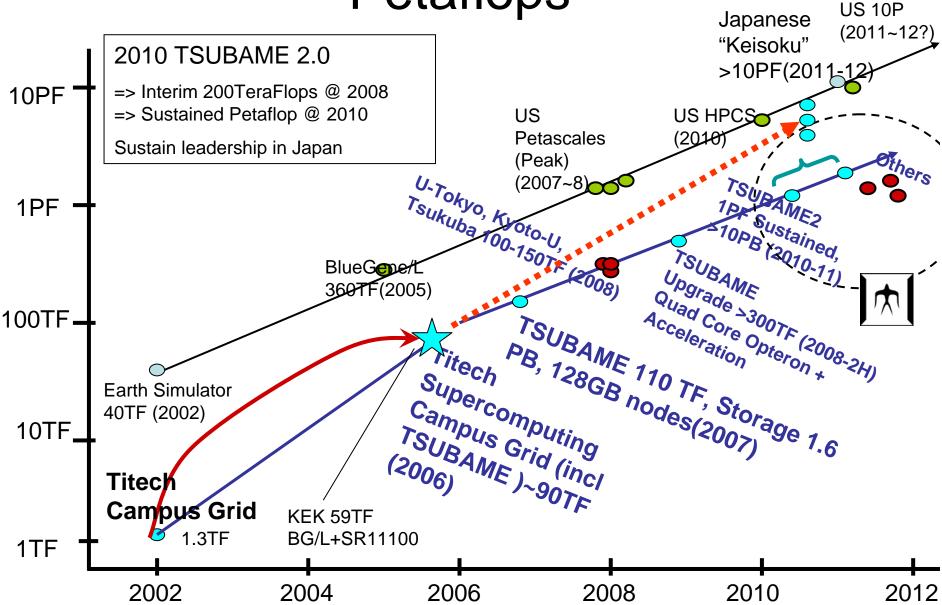

(N=345600)

No CS: 3.802TFlops

(N=391680)

Note: Half CS doesn't work (very slow) with N=391680, because of the memory limitation

Experimental Results



- 47.38TF with 648 nodes and 360 Accelerators Sep.
 - +24 % improvement over No Acc (38.18TF)
 - +25.5GFlops per accelerator
 - Matrix size N=1148160 (It was 1334160 in No Acc)
 - 5.9hours
- NEW(!) With new DGEMM, 48.88 TFlops / 62% Efficiency


Onto TSUBAME 2.0

Petascale and Beyond-but how?

TSUBAME Upgrades Towards
Petaflops

In the Supercomputing Landscape, Petaflops class is already here... in early 2008

Other Petaflops 2008/2009

- LANL/IBM "Roadrunner"
- JICS/Cray(?) (NSF Track 2)
- ORNL/Cray
- ANL/IBM BG/P
- EU Machines (Julich...)

..

2008 LLNL/IBM "BlueGene/P"

- ~300,000 PPC Cores, ~1PFlops
- ~72 racks, ~400m2 floorspace
- ~3MW Power, copper cabling

2008Q1 TACC/Sun "Ranger" ~52,600 "Barcelona" Opteron CPU Cores, ~500TFlops ~100 racks, ~300m2 floorspace 2.4MW Power, 1.4km I B cx4 copper cabling 2 Petabytes HDD

- > 10 Petaflops
- > million cores
- > 10s Petabytes planned for 2011-2012 in the US, Japan, (EU), (other APAC)

Scaling to a PetaFlop in 2010 is Easy, Given Existing TSUBAME

Year	2003	2006	2008	2010	2012	2014	2015
Microns	0.09	0.065	0.045	0.032	0.022	0.016	0.011
Scalar Cores	1	2	4	8	16	32	64
GFLOPS/Socket	6	24	48	96	192	384	768
Total KWfor 1 PF (200W/Socket)	3.3E+05	83333	41667	20833	10417	5208	2604
SIMD/Vector	_	96	192	384	768	1536	3072
GFLOPS/Board	_	96	192	384	768	1536	3072
Total KWfor 1 PF (25W/Board)	-	260.4	130.2	65.1	32.6	16.3	8.14

2009 Conservatively Assuming 0.065-0.045 microns, 4 cores, 48 GFlops/Socket=>200Teraflops, 800 Teraflop Accelerator board

"Commodity" Petaflop easily achievable in 2009-2010

In fact we can build one now (!)

- @Tokyo---One of the Largest IDC in the World (in Tokyo...)
- Can fit a 10PF here easy (> 20 Rangers)
- On top of a 55KV/6GW Substation
- 150m diameter (small baseball stadium)
- 140,000 m2 IDC floorspace
- 70+70 MW power
- Size of entire Google(?) (~million LP nodes)

Commodity Scaling to 2~10 PFs Circa 2011 (Cont'd)

- Loosely coupled apps scale well
- Impractical to assume memory intensive, large message apps (such as spectral methods) to scale to Petaflops
 - Strong technological scaling limits in memory size, bandwidth, etc.
 - Physical limits e.g., power/cooling, \$\$\$
 - Impracticality in resolution (because of chaotic nature of physics, etc.)
- Why ensemble methods and coupled methods (which are scalable) are good
 - => Apps that worked "well on grids" (small scale)

Nano-Science: coupled simluations on the Grid as the sole future for true scalability

... between Continuum & Quanta.

Material physics (Infinite system)

- ·Fluid dynamics
- ·Statistical physics

·Condensed matter theory -

Molecular Science

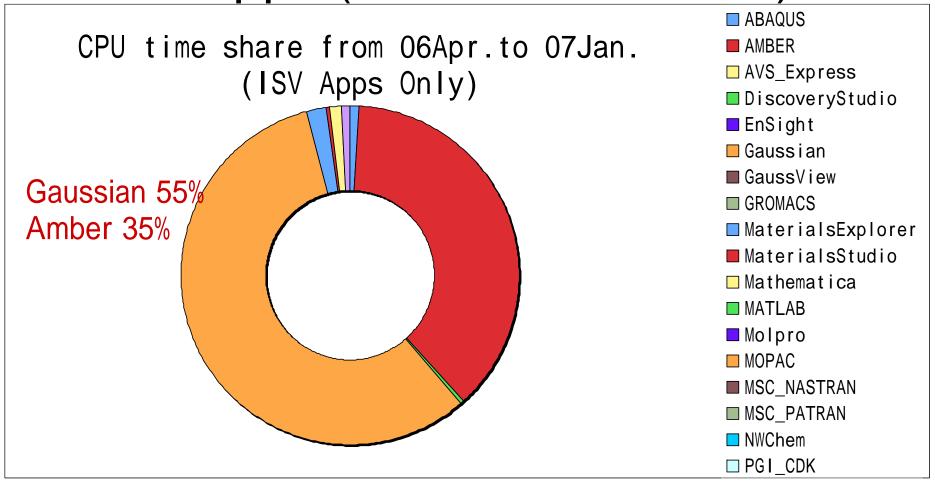
- ·Quantum chemistry
- · Molecular Orbital method
- ·Molecular Dynamics

...

E.g., Advanced MD, req. mid-sized tightly-coupled SMP (#CPU not the limit, but memory and BW)

Multi-Physics

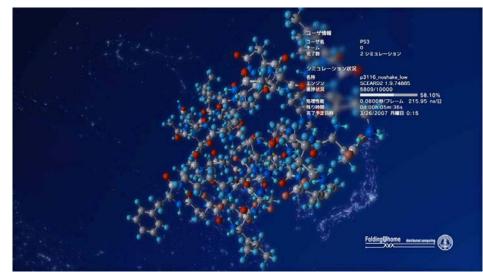
E.g. Fragmented MO, Could use 100,000 loosely-coupled CPUs in pseudo paramter


Old HPC environment:

- decoupled resources,
- ·hard to use,
- ·special software, ...
- ·Too generalpurpose(!)

The only way to achieve true scalability!

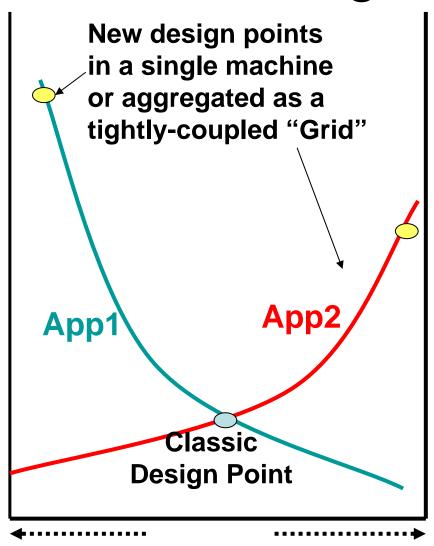
Slide stolen from my NAREGI Grid
Slide Stack => Tightly-coupled "Grid"
as future Petascale machine


Reprisal: TSUBAME Job Statistics for ISV Apps (# CPU Timeshare)

Multi-User and Ensemble! (20,000-way Gaussian ensemble job recorded on TSUBAME) => Throughput(!)

Standford Folding@Home

- (Ensemble) GROMACS, Amber etc. on Volunteer Grid
- PS3: 1/2 (effective)
 Petaflops and growing (in standard OS(!))
- Accelerator (GPGPU) most Flops/CPU/unit
- Combined, 71%
 effective FLOPS @ 14%
 CPUs
- 7 Petaflops Peak (SFP),
 10% efficiency
 - Feasible NOW to build a useful 10PF machine



Folding@Home 2007-03-25 18:18:07

OS Type	TFLOPS	Active CPUs	GFLOPS/CPU		
Windows	154	161,586	0.95		
Mac/PPC	7	8,880	0.79		
Mac/Intel	9	3,028	2.97		
Linux	43	25,389	1.69		
<u>GPGPU</u>	44	749	58.74		
PS3	482	30,294	15.91		
Total	739	229926	3.21		

Future Multi-Petascale Designs

- Assuming Upper bound on Machine Cost
- A homogeneous machine entails compromises in all applications
- Heterogeneous Grids of Large Resources would allow multitple design points to coexist
- And this also applies to a single machine as well

More FLOPS More Storage/BW

Biggest Problem is Power...

Machine	CPU Cores	Watts	Peak GFLOPS	Peak MFLOPS/ Watt		Ratio c.f. TSUBAME
TSUBAME(Opteron)	10480	800,000	50,400	63.00	76.34	
TSUBAME(w/ClearSpeed)	11,200	810,000	85,000	104.94	72.32	1.00
Earth Simulator	5120	6,000,000	40,000	6.67	1171.88	0.06
ASCI Purple (LLNL)	12240	6,000,000	77,824	12.97	490.20	0.12
AIST Supercluster	3188	522,240	14400	27.57	163.81	0.26
LLNL BG/L (rack)	2048	25,000	5734.4	229.38	12.21	2.19
Next Gen BG/P (rack)	4096	30,000	16384	546.13	7.32	5.20
TSUBAME 2.0 (2010Q3/4)	160,000	810,000	2,048,000	2528.40	5.06	24.09

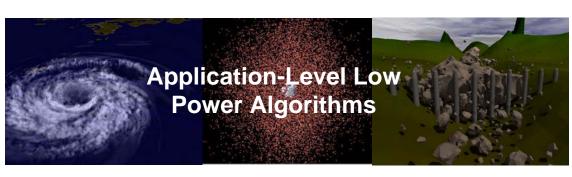
TSUBAME 2.0 x24 improvement in 4.5 years...? → ~ x1000 over 10 years

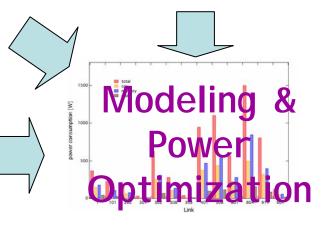
The new JST-CREST "Ultra Low Power HPC" Project 2007-2012

- x1000 Flops/W improvement @ 10 years -

ULP-HPC SIMD-Vector (GPGPU, etc.)

Zero Emission Power Sources

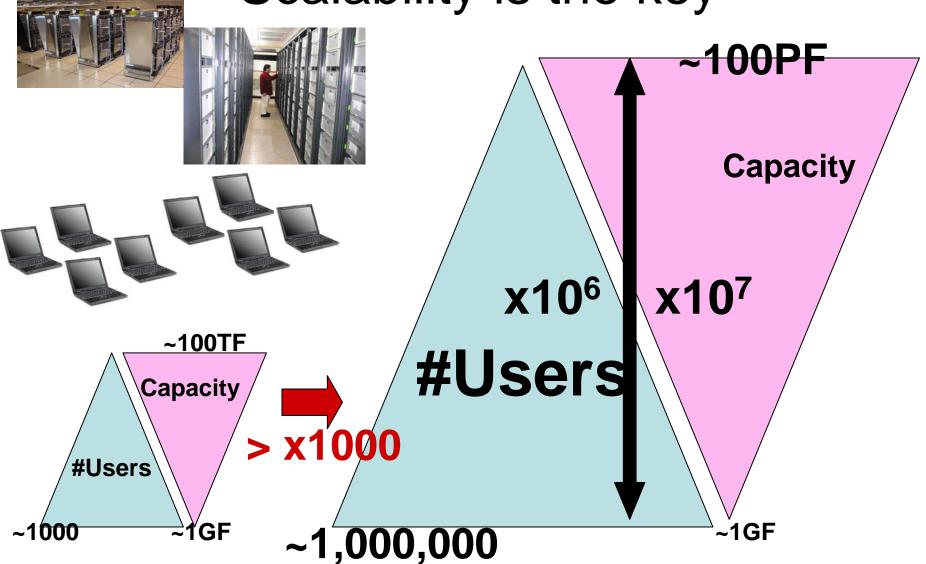




New Massive & Dense Cooling Technologies

VM Job Migration Power Optimization

TSUBAME


TSUBAME in Retrospect and Future

- Increasing Commoditization of HPC Space
 - CPUs (since Beowulf, ASCI Red, ...)
 - High BW memory, Large-memory SMP

 - High BW Interconnect (10GbE, IB => 100Gb)
- Very Fast I/O (PCI-E, HT3, ...)
 High BW Interconnect (10GbE,
 Now SIMD-Vector (ClearSpeed - Now SIMD-Vector (ClearSpeed, GPGPU, Cell...)
 - Next: Extreme Many-Core, Optical Chip-Chip interconnect, 3-D Chip Packaging, ...
 - Technology => Software Stack & the right apps & meta-application schema
 - The same software stack on your laptop + Grid
 - DON'T focus on a single app or user efficiency metaapplication schema, multi-user, infrastructue design
 - Learn from the Grid (!)
 - proprietary architectures makes no sense
 - Ecosystems and Economics THE KEY of future HPC(!)



Beyond Petascale "Grid" Scalability is the key

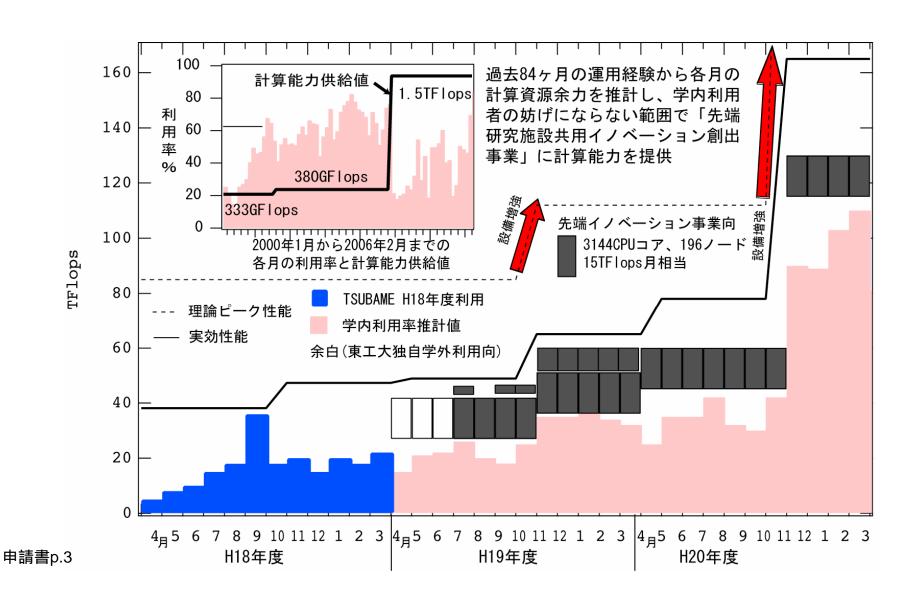
2016A.D. Deskside Petascale

1000 times scaling down of a SC: but how?

2016 Deskside Workstation >100TeraFlops, 1.5KiloWatt, 300cm²

Need R&D as "Petascale Informatics" in CS and Applications to achieve x1000 breakthrough

What can a scientist or an engineer achive with daily, personal use of petascale simulation?


2006A.D. Titech Supercomputing Grid #1 in Asia: 100TeraFlops, > 10,000 CPU, 1.5 MegaWatt, 300m²

Simple scaling will not work

No more aggressive clock increase Multi-core works but less than x100

Seasonal Corporate Usage

